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Abstract
The goal of the current study was to conduct a conceptual replication of the reciprocal associations between executive function (EF) 
and academic achievement reported in Schmitt et al. (2017, https://doi.org/10.1037/edu0000193). Using two independent samples (N 
(STAR) = 279, and N (Pathways) = 277), we examined whether the patterns of associations between EF and achievement across 
preschool and kindergarten reported in Schmitt et al. (2017) replicated using the same model specifications, similar EF and 
achievement measures, and across a similar developmental age period. Consistent with original findings, EF predicted subsequent 
math achievement in both samples. Specifically, in the STAR sample, EF predicted math achievement from preschool to kindergarten, 
and kindergarten to first grade. In the Pathways sample, EF at kindergarten predicted both math and literacy achievement in first 
grade. However, contrary to the original findings, we were unable to replicate the bidirectional associations between math 
achievement and EF in either of the replication samples. Overall, the current conceptual replication has revealed that bidirectional 
associations between EF and academic skills might not be robust to slight differences in EF measures and number of measurement 
occasions, which has implications for our understanding of the development EF and academic skills across early childhood. The 
present findings underscore the need for more standardization in both measurement and modeling approaches – without which the 
inconsistency of findings in published studies may continue across this area of research.
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Research in the developmental and educational literatures has consistently demonstrated associations between child­
ren’s executive function (EF) skills and early academic achievement (e.g., Best, Miller, & Naglieri, 2011; Bull, Espy, & 
Wiebe, 2008). However, the nature of these relations has become a topic of debate in recent years (see Peng & Kievit, 
2020 for review). Historically, research in this area has treated EF as foundational for academic skill development given 
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its support of learning and adaptation in early school settings (e.g., Blair, 2002; Zelazo, Blair, & Willoughby, 2016). 
Specifically, children’s ability to process and manipulate information, inhibit automatic and potentially inappropriate 
responses to the environment, and direct their attention to appropriate tasks has been shown to be particularly useful 
in early learning settings (e.g., Morrison, Ponitz, & McClelland, 2010). Collectively, this research suggests that strength­
ening children’s EF skills could enhance their math and literacy development during the early and formative years of 
schooling (Blair & Diamond, 2008; Blair & Razza, 2007; McClelland et al., 2007). As such, large-scale interventions have 
been designed to target EF skills through educational practices and comprehensive curricula programs (e.g., Tools of the 
Mind; Bodrova & Leong, 2001; Promoting Alternative Thinking Strategies, Kusche et al., 1994; Chicago School Readiness 
Program; Raver et al., 2008).

Executive Function and Academic Achievement
Recent work, however, has cast doubt on the causal links between early EF skills and children’s academic development 
(e.g., Jacob & Parkinson, 2015). Longitudinal studies, for example, examining bidirectional links between EF skills and 
academic achievement have challenged the predominant unidirectional perspective of EF supporting academic skill 
development (e.g., Cameron, Kim, Duncan, Becker, & McClelland, 2019; Fuhs, Nesbitt, Farran, & Dong, 2014; McKinnon 
& Blair, 2019; Meixner, Warner, Lensing, Schiefele, & Elsner, 2019; Miller-Cotto & Byrnes, 2020; Welsh, Nix, Blair, 
Bierman, & Nelson, 2010). This work has leveraged the availability of multiple time-points of data to describe reciprocal 
relations between EF and achievement over time, testing whether these constructs co-develop or are directional in 
nature during the early years of schooling. In many cases, autoregressive cross-lagged panel (ARCL) models were used 
to test whether domain general cognitive abilities, such as EF, prospectively predict domain specific abilities, such as 
academic achievement - or the degree to which cognitive abilities and academic skills co-develop (mutually influence 
each other) over time (see Peng & Kievit, 2020 for review). This research is often referred to as the theory of mutualism 
or co-development between EF and academic skills across time.

Findings from these studies using the concept of mutualism have been mixed. For example, Welsh and colleagues 
(2010) found bidirectional relations between EF and numeracy skills (but not literacy skills) during preschool (Mage = 
4.49 years), whereas other work has shown that EF prospectively predicts math and literacy achievement from preschool 
to kindergarten (Fuhs et al., 2014). Additionally, studies examining reciprocal relations using more than two time-points 
have yielded different directional patterns across early development. For example, Schmitt, Geldhof, Purpura, Duncan, 
and McClelland (2017) found bidirectional relations between EF and math achievement across the preschool school 
year (Mage = 4.70 years), and unidirectional associations from EF to math achievement across kindergarten (Mage = 5.70 
years). Conversely, McKinnon and Blair (2019) reported bidirectional associations between EF and math skills across 
kindergarten (Mage = 5.75 years), as well as from kindergarten to first grade.

Inconsistencies in Prior Work
Although the general consensus is that EF and academic abilities are linked across early development (e.g., Peng & 
Kievit, 2020), the inconsistencies in measurement and modeling approaches across studies may have contributed to 
the mixed findings in this area. For example, the skills that make up EF are frequently referred to and measured 
inconsistently and interchangeably, creating what has been referred to as “Conceptual Clutter” and “Measurement 
Mayhem” (Morrison & Grammer, 2016). Additionally, the diversity of EF measures used, within and across disciplines, 
has created barriers to achieving an agreed-upon definition of these important skills (e.g., Jones et al., 2016). Further, 
the differences in model specification across studies examining the concept of mutualism may have also contributed 
to the inconsistencies in findings in the current literature (Camerota, Willoughby, & Blair, 2020; Rhemtulla, van Bork, 
& Borsboom, 2020). For example, some studies treat EF as a composite variable, (e.g., Welsh et al., 2010) whereas 
others model EF as a latent variable (e.g., Schmitt et al., 2017). Finally, the developmental window during which these 
constructs are measured differ considerable across the studies in this area, including, but not limited to the frequency 
that EF and academic skills are measured in early childhood (Fuhs et al., 2014; Schmitt et al., 2017).
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The Present Study
Given the inconsistencies in the literature on the role of EF and academic skills and the continued emphasis on 
interventions of EF to improve academic outcomes, it is important to try to replicate the findings of the co-development 
of these constructs. Therefore, the goal of the present study is to conduct a conceptual replication of the Schmitt et al. 
(2017) study that found important reciprocal relations between EF and academic achievement outcomes by leveraging 
data from two independent longitudinal studies. We chose to replicate Schmitt et al. (2017) for several reasons. First, 
the overlap in the EF and academic achievement measures used across the three samples allowed us to replicate the 
Schmitt et al. (2017) study using similar measures of EF and academic skills. Second, the timing of measurement (i.e., 
preschool through the end of kindergarten) is similar across the three samples, which will allow us to test the concept of 
mutualism (co-development) between EF and academic skills across a similar developmental window (i.e., 4.5 years – 6.5 
years old). Finally, the two independent samples included a sufficient number of EF measures to allow for similar model 
specifications (e.g., latent variable modeling) as Schmitt and colleagues (2017).

Schmitt et al. (2017) examined longitudinal relations between EF, math, and literacy using ARCL modeling. In 
the original investigation, Schmitt and colleagues (2017) reported bidirectional associations between EF and math 
achievement, but not literacy, across the preschool year. However, EF prospectively predicted literacy achievement 
from the spring of preschool to the fall of kindergarten. Further, they found that EF prospectively predicted math, but 
not literacy achievement across the kindergarten school year. Based on these findings, we expect to see bidirectional 
associations between EF and math and literacy achievement from preschool to kindergarten (STAR sample) and that EF 
would prospectively predict math from kindergarten to first grade (STAR and Pathways sample).

Method

Participants and Procedures
Schmitt et al. (2017) Dataset

Data were collected on a total of 435 children in the Pacific Northwest, U.S. The study consisted of four waves of 
data collection; children were assessed in the fall of preschool, spring of preschool, fall of kindergarten, and spring of 
kindergarten. On average, children were 4.70 years old (SD = 0.30) at the beginning of the study, and 51% were male. 
This sample consisted of 63% White children, 19% Latino/Hispanic children, 13% multiracial children, 3% Asian/Pacific 
Islander children, and 2% other ethnicities. In the fall of preschool, 55% of children were enrolled in Head Start and 15% 
were primarily Spanish speakers. At each wave, children was assessed on a battery of EF, literacy, and math measures.

Children were recruited from schools using a convenience sampling approach, such that, schools and children that 
were accessible and willing to participate were included in the study. Parents of children signed a written informed 
consent letter agreeing for their child to participate in the study. Children were assessed in two to three sessions that 
lasted 10 to 15 minutes each. For more information about this sample, refer to Schmitt et al. (2017).

STAR Dataset

This project was an extension of a larger longitudinal project on trajectories of early academic development. Data were 
collected on a total of 278 children in a Southeastern U.S. city. The study consisted of three waves of data collection; 
children were assessed in preschool, kindergarten, and first grade. On average, children were 4.67 years old (SD = 0.42) 
at the beginning of the study, and 55% were male. This sample consisted of 60% White children, 28% Black children, 
2% Asian children, and 10% multiracial children. The sample broadly represented the region in which the children were 
recruited. All children had no known developmental disorders.

Children were recruited from libraries, daycare centers, and local establishments. Data collection took place as 
laboratory visits which lasted approximately two hours. During these visits, children participated a number of tasks 
that assessed cognitive and emotional development. Each child was assessed on a battery of executive function and 
achievement measures by a trained experimenter. Parents received monetary compensation for their time, and children 
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selected a small toy at the completion of the visit. All procedures were approved by the university institutional review 
board.

Pathways Dataset

This project was an extension of a larger longitudinal project studying the effect of schooling on executive function 
development. A total of 367 children participated in the larger longitudinal project; however, 88 children were recruited 
in either first or second grade, and were therefore excluded from the current sample. Thus, the full sample for the 
current study consisted of 279 children attending seven elementary schools in Midwestern U.S. cities. The sample 
included three cohorts of children who were assessed across the fall and winter of kindergarten and first grade. On 
average, children were 5.38 years old (SD = 0.10) when first tested, 47% were male. Although child level race, ethnicity, 
and socioeconomic status was not collected, all children were recruited from racially and socioeconomically diverse 
schools. Schools included in this sample served children from a broad range of socioeconomic backgrounds based on 
school-wide percentages of free or reduced-price lunch (FRPL; 2% - 71.9%).

Children in this sample were recruited from schools using a convenience sampling approach, similar to Schmitt et al. 
(2017), such that schools and children that were accessible and willing to participate were included in the study. Parents 
of children signed a written informed consent letter agreeing for their child to participate in the study. Children were 
individually assessed in schools outside their classrooms for a 45-minute period. During these assessments, each child 
was assessed on a battery of executive function and achievement measures by a trained experimenter. The order and 
versions of assessments were counterbalanced, as there were two different orderings of assessments and two different 
versions of each of the assessments. Children received a bookmark with stickers at the completion of the visit. All 
procedures were approved by the university institutional review board.

Measures
Executive Function

A variety of children’s executive function skills were assessed in each sample. Both STAR and Pathways samples 
included executive function measures of working memory and inhibitory control, as well as an additional measure. 
The additional measure in the STAR sample included a cognitive flexibility measure, and the additional measure in the 
Pathways sample included one global executive function measure. See Table 1 for a summary of overlapping variables 
across all datasets.

Table 1

Summary of Samples and Measures Across Datasets

Variable Schmitt et al. (2017) STAR Pathways

N 424 277 279

Covariates ELL, Head Start, Age Age Age

Waves Fall PK, Spring PK, Fall K, Spring K PK, K, 1 K, 1

Achievement
Literacy Letter Word ID Letter Word ID Letter Word ID

Math Applied Problems Applied Problems Applied Problems

Executive Function
Working Memory Auditory Working Memory Numbers Reversed Digit Span

Cognitive Flexibility Card Sort (traditional) Card Sort (computer)

Inhibitory Control Simon Says Go-No/Go (d’) Zoo Go-No/Go (d’)

All HTKS HTKS

Note. ELL = English Language Learner; PK = Preschool; K = Kindergarten; G1 = First Grade; HTKS = Head-Toes-Knees-Shoulders.
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Schmitt et al. (2017) Executive Function

Auditory Working Memory — Children’s working memory was measured using the Auditory Working Memory 
subtest from the Woodcock-Johnson III Tests of Cognitive Abilities (Woodcock, McGrew, & Mather, 2001). Participants 
were instructed to repeat back to the experimenter things and numbers in a specific order. An overall accuracy score 
was calculated by adding children’s correct responses (each correct trial = 1 point). See Schmitt et al. (2017) for more 
information on this task.

Simon Says — Children’s inhibitory control was measured using the Simon Says task (Carlson, 2005; Strommen, 1973). 
The experimenter asked children to perform an action only if the experimenter says, “Simon says”, otherwise the child 
should remain still. For more information on how this task was scored, see Schmitt et al. (2017).

Card Sort — Children’s cognitive flexibility was measured using a Card Sort task similar to the traditional Dimensional 
Change Card Sort task (Blackwell, Cepeda, & Munakata, 2009; Frye, Zelazo, & Palfai, 1995; Zelazo, 2006). The experi­
menter asked children to sort colored picture cards of a dog, fish, or bird on the basis of three dimensions: color, shape, 
and size. See Schmitt et al. (2017) for more information on this task.

Head-Toes-Knees-Shoulders (HTKS) — The HTKS task was used to measure all of children’s executive function skills 
through gross motor responses: working memory, inhibitory control, and cognitive flexibility (McClelland & Cameron, 
2012; McClelland et al., 2014). Children were told they were going to play a game in which they must do the opposite 
of what the examiner’s directions say, varying from touching your head, toes, knees, or shoulders. For example, if the 
trained examiner said, “touch your head” children were expected to touch their toes. The task grows in difficulty across 
three sections of questions in which the rules change. If children responded incorrectly, they were given a score of 0. If 
children responded correctly, they were given a score of 2, and if children self-corrected their response, they were given 
a score of 1. For more information on this task, see Schmitt et al. (2017).

STAR Executive Function

Numbers Reversed — Children’s working memory capacity was measured using the Numbers Reversed subtest of The 
Woodcock-Johnson III (Woodcock et al., 2001). Participants were instructed to listen to the experimenter recite a string 
of numbers (beginning with two numbers and gradually increasing) and then repeat the numbers in reverse order. An 
overall accuracy score was calculated by adding children’s correct responses (each correct trial = 1 point).

Go/No-Go — A computer-based Go/No-Go paradigm was used to assess children’s inhibitory control and sustained 
attention. Children were asked to press a button each time they saw an animal, except for when they saw a dog (Lahat, 
Todd, Mahy, Lau, & Zelazo, 2010). There were a total of 144 trials (75% Go). A discriminability index (d’ = Z(Correct/Hit) 
– Z (Incorrect/False Alarm)) was used to assess the participants’ ability to distinguish signals from noise (Stanislaw & 
Todorov, 1999).

Dimensional Change Card Sort (DCCS) — Cognitive flexibility (also known as task shifting) was measured using a 
computerized version of The Dimensional Change Card Sort task (Espinet, Anderson, & Zelazo, 2012). In the pre-switch 
block, children were asked to sort the stimuli according to their shape (15 trials). In the post-switch block, children 
were asked to sort the stimuli according to color (30 trials). The post-switch was followed by a “borders” block in which 
children were instructed to sort stimuli on one dimension (color) if the picture had a border around it but the other 
dimension (shape) if the picture did not have a border (12 trials). Percent accuracy was computed for each block and 
weighted averages were created as follows: Preschool: 33.3% pre-switch, 66.7% post-switch; kindergarten & 1st grade: 
25% pre-switch, 50% post-switch, 25% borders. Higher scores indicated greater cognitive flexibility.

Several outcome measures from this dataset were previously published, thus for further information regarding 
these measures, see Isbell, Calkins, Swingler, and Leerkes (2018), Isbell, Calkins, Cole, Swingler, and Leerkes (2019), 
Zeytinoglu, Leerkes, Swingler, and Calkins (2017) and Zeytinoglu, Calkins, and Leerkes (2019). However, this publication 
differs from the previous publications as Isbell and colleagues (2018, 2019) only used the Go/No-Go task and the WJ 
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subtests in their work, and even though Zeytinoglu and colleagues (2017, 2019) used the EF measures, they did not 
investigate links between EF and academic outcomes.

Pathways Executive Function

Digit Span Backward — Children’s working memory was assessed using the Digit Span—Backward subtest of the 
McCarthy Scales for Children's Abilities (McCarthy, 1972). Participants were read a sequence of numbers (beginning 
with two numbers and gradually increasing), and asked to repeat the same sequence back to the examiner in reverse 
order.

Go/No-Go — A Go-No Go paradigm called the Zoo Game (Grammer, Carrasco, Gehring, & Morrison, 2014) was used 
to assess children’s inhibitory control and sustained attention. Children were told to press a button each time they saw 
an animal, except for when they saw an orangutan. There were a total of 320 trials (75% Go). A discriminability index 
(d’ = Z(Correct/Hit) – Z (Incorrect/False Alarm)) was used to assess participants’ ability to distinguish signals from noise 
(Stanislaw & Todorov, 1999). Larger values of d’ indicate better task performance.

Head-Toes-Knees-Shoulders (HTKS) — The Head-Toes-Knees-Shoulders (HTKS; Cameron et al., 2008) task was 
used to assess children’s cognitive flexibility, working memory, and inhibitory control through gross motor responses 
(McClelland & Cameron, 2012; McClelland et al., 2014). This EF measure was the same measure used in the Schmitt et al. 
(2017) study.

Academic Achievement

Mathematics — The standardized Applied Problems subtest of the Woodcock-Johnson III Tests of Achievement (WJ­
AP; Woodcock, McGrew, & Mather, 2001) was used to assess individual mathematical skills. The Applied Problems task 
assesses children on numerous early math skills such as counting, representational arithmetic, abstract arithmetic, and 
the ability to read a clock. Items increase in difficulty as children progress through the task, and basal and ceiling levels 
are determined for each student. The WJ-AP was counterbalanced (Form A or Form B) such that children would be less 
likely to remember questions from the year before and completed by children at all waves.

Literacy — The standardized Letter-Word Identification subtest of the Woodcock-Johnson III Tests of Achievement 
(WJ-LWID; Woodcock, McGrew, & Mather, 2001) was used to assess children’s literacy skills. The WJ-LWID subtest 
assessed children’s ability to read letters and words in both expressive and receptive language. Items in this task were 
also ranked in order of difficulty, and basal and ceiling levels were determined for each student. This task was completed 
by children at all waves.

Covariates

In an effort to replicate the results from the original study as closely as possible, we also considered which covariates 
should be included. The original analyses, Schmitt et al. (2017), included English Language Learners (ELL), Head Start 
enrollment, and age as covariates. The STAR dataset did not have Head Start enrollment, but there were 11 children 
for whom English was not the primary language spoken at home. Language spoken at home did not relate to the 
independent or dependent variables in our analyses (p = .09-.99) and did not predict attrition in kindergarten (χ2 = 140, p 
=.93) or grade 1 assessments (χ2 =1.03, p = .60). Based on these preliminary analyses and the small percentage of children 
who were ELL (4%), we did not include ELL as a covariate in our analyses. In the replication analyses, the Pathways 
dataset did not include ELL or Head Start enrollment. Thus, age was the only covariate common to all three datasets 
(STAR, Pathways, and Schmitt et al. (2017)).

Analytic Approach
Similar to Schmitt et al. (2017), all analyses were conducted in Mplus (Muthén & Muthén, 1998-2015). We used full 
information maximum likelihood estimation (FIML) to handle missing data to reduce potential bias in the parameter 
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estimates (Enders & Bandalos, 2001). This permitted the inclusion of all participants with data on one or more variables. 
Due to the missing data and potential departures from multivariate normality, the model was estimated using a robust 
maximum likelihood estimator (MLR). We used ARCL models to examine longitudinal relations between EF, math, 
and literacy achievement. In both datasets, we first specified an initial longitudinal confirmatory factor analysis (CFA) 
model, controlling for participants’ age at first testing to examine the fit and factor loadings of the latent EF factors 
at each wave. In STAR, the EF latent factors consisted of Numbers Reversed, DCCS, and Go-No/Go. In the initial CFA 
models, we scaled all latent factors by fixing the latent means to zero and latent variables to one. In Pathways, the EF 
latent factors consisted of HTKS, Digit Span Backward, and Go-No/Go.

Next, we examined the measurement invariance of the EF construct across waves to understand if EF was measured 
in a consistent way across time. Consistent with Schmitt et al. (2017), we first tested weak factorial invariance (also 
called metric invariance) to examine the degree to which the specific EF indicators (e.g., working memory) loaded on 
to the EF constructs equally across time. This was tested by equating the same EF indicators’ loadings across wave. 
Next, we tested strong factorial invariance (also called scalar invariance) to understand whether the EF construct was 
measured on the same interval or ratio across time. This was tested by equating the same EF indicators’ intercepts 
across waves. Although there are different strategies for evaluating measurement invariance, we followed the approach 
used in Schmitt et al. (2017) given our goal of replicating their study. Thus, consistent with Schmitt and colleagues, 
the models were compared to the initial CFA model and were rejected if the Comparative Fit Index (CFI) decreased by 
more than .01 (Chen, 2007), and if full weak or full strong factorial invariance led to a decrease in model fit, partial 
measurement invariance was tested by freeing at most two parameters. For a further discussion, see Little (1997) and 
Schmitt et al. (2017).

After establishing longitudinal measurement invariance for the EF factors, we specified a longitudinal structural 
equation model (SEM) with math and literacy as manifest variables. The SEM includes single-lag stability regressions 
and single-lag cross-construct regressions. Executive function factors, math, and literacy were all allowed to covary. All 
models included child age at initial assessment as time-invariant covariates. Similar to Schmitt et al. (2017), model fit 
was adequate based on appropriate fit statistics including Comparative Fit Index (CFI) and Tucker Lewis Index (TLI) 
between 0.95 and 1.00 (Hu & Bentler, 1999; Kline, 2005), and the Root Mean Square Error of Approximation (RMSEA) 
less than 0.06 (Hu & Bentler, 1999).

Sensitivity Power Analyses

The STAR and Pathways samples are existing datasets, thus, a sensitivity power analysis was used to calculate the 
minimally detectable effect sizes (MDES) given the sample sizes for all statistical analyses (Cribbie, Beribisky, & Alter, 
2019; Giner-Sorolla et al., 2019). This provides some context for why we see different rates of significance across the 
studies for given effect sizes. In the STAR dataset, with three latent variables, six observed variables, 277 participants, 
α = .05, and power (1-β) = .80, the sensitivity power analysis suggested that the MDES was 0.21 (Soper, 2020). In the 
Pathways dataset, with two latent variables, four observed variables 279 participants, α = .05, and power (1-β) = .80, the 
sensitivity power analysis suggested that the MDES was 0.18 (Soper, 2020). Whereas Schmitt et al. (2017) reported an 
effect size as small as .11 as significant in their sample, our sensitivity power analyses suggest that neither the STAR nor 
Pathways datasets are powered to detect effect sizes under .18 as significant.

Results
Descriptive statistics for all three datasets are presented in Tables 2 and 3. Correlation tables for both the STAR and 
Pathways studies can be found in the Appendix.
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Table 2

Descriptive Statistics of Preschool Waves

Variable

Schmitt et al. Wave 1 STAR Wave 1 Schmitt et al. Wave 2

N M SD N range M SD N M SD
Age 424 4.70 0.30 277 3.75 – 5.83 4.69 0.39 394 5.15 0.30

Achievement
Literacy 408 335.65 26.59 278 276 – 494 348.98 28.87 390 349.33 26.80

Math 401 410.17 23.30 278 332 – 471 416.18 19.52 391 419.83 23.11

Executive Function
Working Memory 400 450.30 14.80 276 403 – 489 424.50 27.22 385 456.17 17.97

Cognitive Flexibility 409 13.64 6.67 274 28.89 – 100 75.53 22.68 389 16.49 5.92

Inhibitory Control 408 0.14 0.28 264 -0.08 – 5.39 2.23 1.04 387 0.29 0.38

All 403 17.41 17.20 – – – 391 25.15 18.28

Note. Schmitt et al. Wave 1 = fall of preschool and Wave 2 = spring of preschool. STAR Wave 1 = preschool. Pathways dataset did not include a 
preschool wave. Working Memory = Auditory Working Memory in Schmitt et al., Numbers Reversed in STAR, and Digit Span in Pathways. Cognitive 
Flexibility = DCCS traditional in Schmitt et al., and DCCS computer in STAR. Inhibitory Control = Simon Says in Schmitt et al., Go-No/Go (d') in 
STAR, and Zoo Go-No/Go (d') in Pathways. All = HTKS in Schmitt et al. and Pathways.

Table 3

Descriptive Statistics of Kindergarten and First Grade Waves

Variable

Schmitt et al. Wave 3 STAR Wave 2 Pathways Wave 1

N M SD N range M SD N range M SD
Age 308 5.67 0.30 249 5.08 – 6.75 5.90 0.32 279 4.93 – 6.94 5.71 0.39

Achievement
Literacy 305 366.00 29.14 249 326 – 519 407.78 35.07 275 283 – 507 385.57 33.96

Math 305 431.02 20.71 249 372 – 490 441.02 17.68 273 333 – 481 430.50 18.77

Executive Function
Working Memory 303 464.60 19.21 249 403 – 516 457.02 26.81 276 0 – 8 2.10 1.65

Cognitive Flexibility 307 18.60 4.88 248 13.75 – 100 81.47 15.88 – – –
Inhibitory Control 307 0.45 0.39 245 0.79 – 5.39 2.96 0.92 202 -0.41 – 3.68 1.67 .79

All 303 33.17 17.74 – – – 277 0 – 58 30.75 16.89

Note. Schmitt et al. Wave 1 = fall of preschool and Wave 2 = spring of preschool. STAR Wave 1 = preschool. Pathways dataset did not include a 
preschool wave. Working Memory = Auditory Working Memory in Schmitt et al., Numbers Reversed in STAR, and Digit Span in Pathways; Cognitive 
Flexibility = DCCS traditional in Schmitt et al., and DCCS computer in STAR; Inhibitory Control = Simon Says in Schmitt et al., Go-No/Go (d') in 
STAR, and Zoo Go-No/Go (d') in Pathways; All = HTKS in Schmitt et al. and Pathways.
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Table 3

Cont.

Variable

Schmitt et al., Wave 4 STAR Wave 3 Pathways Wave 2

N M SD N range M SD N range M SD
Age 299 6.17 0.29 257 6.17 – 8.00 6.96 0.35 168 6.14 – 8.05 6.84 .34

Achievement
Literacy 295 400.24 35.21 240 374 – 530 455.78 31.25 164 348 – 525 448.70 33.36

Math 295 442.09 19.29 240 423 – 507 460.35 15.84 165 409 – 502 457.82 16.46

Executive Function
Working Memory 294 473.18 19.90 239 403 – 522 475.16 20.93 167 0 – 8 3.47 1.35

Cognitive Flexibility 295 19.78 3.88 240 35.42 – 100 88.71 10.76 – – –
Inhibitory Control 294 0.54 0.38 239 1.02 – 5.39 3.41 0.93 124 -0.35 – 3.99 2.26 0.81

All 296 39.20 16.00 – – – 166 0 – 59 44.29 11.31

Note. Schmitt et al. Wave 1 = fall of preschool and Wave 2 = spring of preschool. STAR Wave 1 = preschool. Pathways dataset did not include a 
preschool wave. Working Memory = Auditory Working Memory in Schmitt et al., Numbers Reversed in STAR, and Digit Span in Pathways; Cognitive 
Flexibility = DCCS traditional in Schmitt et al., and DCCS computer in STAR; Inhibitory Control = Simon Says in Schmitt et al., Go-No/Go (d') in 
STAR, and Zoo Go-No/Go (d') in Pathways; All = HTKS in Schmitt et al. and Pathways.

Confirmatory Factor Analyses and Measurement Invariance
In both datasets, the initial CFA of the EF variables fit the data well (see Tables 4 and 5), such that all factor loadings 
were above 0.40 (Stevens, 1992), and all factor loadings were statistically significant for all indicators at each wave (all ps 
< .05). The initial tests of weak factorial invariance substantially decreased model fit in both datasets (STAR: Δ CFI = .02; 
Pathways: Δ CFI = .03). Thus, for each dataset, we assessed partial weak and partial strong factorial invariance across EF 
factors.

In the STAR dataset, freely estimating the numbers reversed factor loading for wave 1 resulted in a model that 
supported partial weak invariance (Δ CFI = -.00; Δ BIC = 12.99). Although freeing indicators other than numbers 
reversed could also result in partial weak invariance, one reason why we chose to free this indicator was because its 
standardized factor loading seemed to be smaller (β = .48) than the factor loadings at the subsequent waves (β = .68 
& .55) in the unconditional model (see Table 4). This was likely because there was less variability in the distribution of 
numbers reversed in the first wave compared to the subsequent two waves, given the difficulty of this task for some 
preschoolers. Moreover, the numbers reversed and DCCS intercepts were freely estimated across waves, resulting in 
partial strong invariance (Δ CFI = -.00; Δ BIC = 13.22). Numbers reversed was freely estimated to be consistent with 
the weak invariance decision. In addition to numbers reversed, we chose to freely estimate DCCS intercepts because 
the DCCS task at the second and third waves also included the “borders” block, whereas this block was not included 
in the first wave and thus this change has likely affected the scale of the latent variable across time. In the Pathways 
dataset, freely estimating the Zoo Go/No-Go factor loading for wave 1 resulted in a model that supported partial 
weak invariance (Δ CFI = .00; Δ BIC = 4.70). Similar to the STAR sample, we chose to free this indicator because its 
standardized factor loading seemed to be smaller (β = .41) than the factor loadings at the subsequent waves (β = .82 
& .51) in the unconditional model (see Table 4). Moreover, we freely estimated the Zoo Go/No-Go intercept across waves 
to be consistent with the weak invariance decision, thus resulting in partial strong invariance (Δ CFI = .01; Δ BIC = 
11.74). Thus, both STAR and Pathways samples demonstrated partial weak and partial strong measurement invariance 
in EF latent construct across time, suggesting that the EF constructs showed an acceptable level of measurement 
equivalence across time.
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Table 4

Factor Loadings for Unconditional CFA Models

Construct Standardized Loading (SE)

Indicator Schmitt et al. STAR Pathways

Wave 1 EF
Working Memory .34* (.04) .48* (.07)

HTKS .45* (.06)

Cognitive Flexibility .59* (.04) .68* (.06)

Inhibitory Control .45* (.04) .55* (.08)

Wave 2 EF
Working Memory .40* (.03)

HTKS .58* (.04)

Cognitive Flexibility .55* (.05)

Inhibitory Control .52* (.04)

Wave 3 EF
Working Memory .41* (.03) .55* (.08) .51* (.08)

HTKS .63* (.04) .82* (.11)

Cognitive Flexibility .52* (.05) .77* (.10)

Inhibitory Control .52* (.05) .44* (.08) .41* (.08)

Wave 4 EF
Working Memory .54* (.04) .51* (.09) .47* (.12)

HTKS .66* (.04) .68* (.13)

Cognitive Flexibility .59* (.04) .63* (.11)

Inhibitory Control .54* (.04) .38* (.09) .55* (.13)

Note. Working Memory = Auditory Working Memory in Schmitt et al., Numbers Reversed in STAR, and Digit Span in Pathways; Cognitive 
Flexibility = DCCS traditional in Schmitt et al., and DCCS computer in STAR; Inhibitory Control = Simon Says in Schmitt et al., Go-No/Go (d') in 
STAR, and Zoo Go-No/Go (d') in Pathways; All = HTKS in Schmitt et al. and Pathways.
*p < .05.

Table 5

Model Fit for Unconditional CFA Models

Dataset χ2 df RMSEA CFI TLI

STAR 40.28 21 0.06 0.96 0.92

Pathways 16.44 9 0.05 0.96 0.91

Autoregressive Cross-Lagged Models
ARCL models were tested and examined using the EF latent variables and math and literacy variables. Syntax is 
available at https://osf.io/5twgv/. The structural component and standardized results of the final models are presented in 
Figure 1 and 2. A synopsis of standardized coefficients for both autoregressive and cross-lagged paths are summarized 
across all datasets in Table 6. For the structural component and standardized results of the original article, see Figure B.3 
in Schmitt et al. (2017).
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Table 6

Summary of ARCL Associations Between Executive Function and Achievement Across All Datasets

Coefficient Type

Schmitt et al.

Coefficient Type

STAR Pathways

ß ß SE p ß SE p

Cross-lagged coefficients
EFPKFall→ MathPKSpring 0.33***

EFPKFall→ LiteracyPKSpring -0.08

MathPKFall→ EFPKSpring 0.22**

LiteracyPKFall→ EFPKSpring 0.03

MathPKFall→ LiteracyPKSpring 0.16*

LiteracyPKFall→ MathPKSpring 0.03

EFPKSpring→ MathKFall 0.20* EFPK→ MathK 0.84* .39 .03

EFPKSpring→ LiteracyKFall 0.16* EFPK→ LiteracyK 0.30 .25 .25

MathPKSpring→ EFKFall 0.25** MathPK→ EFK 0.18 .27 .50

LiteracyPKSpring→ EFKFall -0.06 LiteracyPK→ EFK 0.12 .11 .26

MathPKSpring→ LiteracyKFall -0.08 MathPK→ LiteracyK -0.01 .19 .96

LiteracyPKSpring→ MathKFall 0.06 LiteracyPK→ MathK 0.03 .09 .77

EFKFall→ MathKSpring 0.39*** EFK→ MathG1 0.39** .15 .01 0.66*** .17 < .001

EFKFall→ LiteracyKSpring 0.08 EFK→ LiteracyG1 0.12 .11 .30 0.33* .13 .01

MathKFall→ EFKSpring 0.04 MathK→ EFG1 0.18 .23 .44 0.27 .22 .22

LiteracyKFall→ EFKSpring 0.02 LiteracyK→ EFG1 0.04 .08 .61 -0.04 .11 .69

MathKFall→ LiteracyKSpring 0.16* MathK→ LiteracyG1 0.05 .10 .58 -0.01 .11 .92

LiteracyKFall→ MathKSpring 0.11* LiteracyK→ MathG1 0.19** .06 .002 0.24* .10 .02

Autoregressive coefficients
EFPKFall→ EFPKSpring 0.75***

MathPKFall→ MathPKSpring 0.50***

LiteracyPKFall→ LiteracyPKSpring 0.74***

EFPKSpring→ EFKFall 0.76*** EFPK→ EFK 0.67* .33 .04

MathPKSpring→ MathKFall 0.62*** MathPK→ MathK -0.03 .32 .93

LiteracyPKSpring→ LiteracyKFall 0.77*** LiteracyPK→ LiteracyK 0.49*** .07 < .001

EFKFall→ EFKSpring 0.86*** EFK→ EFG1 0.74** .25 .003 0.69** .22 .002

MathKFall→ MathKSpring 0.40*** MathK→ MathG1 0.30* .14 .03 -0.05 .15 .74

LiteracyKFall→ LiteracyKSpring 0.69*** LiteracyK→ LiteracyG1 0.71*** .05 < .001 0.54*** .07 < .001

Note. N(Schmitt et al.) = 424, N(STAR) = 277, N(Pathways) = 279; EF = Executive Function; PK = Preschool, K = Kindergarten, G1 = First Grade.
*p < .05. **p < .01. ***p < .001.

STAR ARCL

The longitudinal ARCL fit the data well, χ2 = 106.60, df = 69, CFI = .98, TLI = .96, RMSEA = .04. First, within wave 
correlations demonstrated a similar pattern as mentioned above in which the first wave correlations between math, 
literacy, and EF were large and statistically significant. In particular, the correlation between EF and math achievement 
was very large (r = .87). However, the later within-wave correlations were smaller. Second, the factor stabilities for 
literacy and EF were all significant and above β = .49. The factor stability for math was close to zero from wave one 
to wave two, but then moderate and statistically significant from wave two to wave three (β = .30, SE = .14, p = .03). 
Third, the cross-lagged paths demonstrated that higher executive functioning predicted higher math achievement from 
wave one to wave two, as well as wave two to wave three. Higher executive functioning was not associated with higher 
literacy achievement at either wave. Furthermore, higher literacy achievement at the second wave predicted higher 
math achievement at the third wave, but not at the wave prior. Finally, higher math was not significantly associated 
with higher executive functioning at wave two or wave three.
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Figure 1

Path Diagram for STAR Data Final Structural Replication Model, Controlling for Age (Standardized Coefficients)

Note. Solid lines indicate significant coefficients (p < .05), dashed lines indicate non-significant coefficients. χ2 = 106.60, df = 69, CFI = .98, TLI = .96, 
RMSEA = .04.

Pathways ARCL

Results for the Pathways sample also suggested the longitudinal ARCL model fit the data well, χ2 = 51.94, df = 27, 
CFI = .96, TLI = .93, RMSEA = .06. First, results suggest the first wave correlations between math, literacy, and EF 
were large and statistically significant. However, the second wave correlations were much smaller. Second, the factor 
stabilities for literacy and EF were above .50 for both factors, whereas the stability for math was close to zero. Third, 
when considering the cross-lagged paths, higher executive functioning at wave one predicted higher literacy and math 
achievement at wave two. Further, higher literacy achievement at wave one predicted higher math achievement at wave 
two. In contrast, higher math at the first wave was essentially unrelated to literacy achievement at wave two (β = -.01, 
SE = .11, p = .92), and not significantly related to wave two executive functioning.

Figure 2

Path Diagram for Pathways Data Final Structural Replication Model, Controlling for Age (Standardized Coefficients)

Note. Solid lines indicate significant coefficients (p < .05), dashed lines indicate non-significant coefficients. χ2 = 51.94, df = 27, CFI = .96, TLI = .93, 
RMSEA = .06.
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Discussion
The goal of the present study was to provide a conceptual replication of the ARCL findings reported by Schmitt 
and colleagues (2017). The original study revealed partial measurement invariance of the EF latent variables over 
time, strong autoregressive paths across all constructs, and found bidirectional relations between EF and math and 
literacy achievement from preschool to kindergarten, and unidirectional relations from EF to math across fall and 
spring of kindergarten. Consistent with Schmitt et al. (2017), we found that the EF latent variables demonstrated partial 
measurement invariance over time across both replication datasets. Further, the autoregressive estimates across EF 
latent and observed literacy variables across all datasets was moderate in strength, suggesting longitudinal construct 
stability.

However, the stability of math achievement from preschool to kindergarten (STAR study) and from kindergarten to 
first grade (Pathways study) was close to zero in the ARCL models, which is a significant departure from the stability 
estimates reported in the original study. Additionally, across both samples, we failed to replicate the bidirectional 
pattern of findings between EF, math, and literacy achievement reported in the original study. Specifically, in the 
STAR sample, we found unidirectional associations from EF to math achievement, such that preschool EF prospectively 
predicted math (but not literacy) achievement at kindergarten, and kindergarten EF predicted math (but not literacy) 
achievement at first grade. In the Pathways sample, we replicated the observed unidirectional relations found in Schmitt 
et al. (2017), such that kindergarten EF prospectively predicted math and literacy achievement at the beginning of first 
grade. Math and literacy skills, however, did not predict the EF latent factor in either sample.

The inconsistent pattern of findings in our replication study mimic the inconsistencies that are found in the EF and 
academic skills literature during early childhood. In addition to the results reported by Schmitt et al. (2017), several 
recent studies have also found evidence of the co-development of EF and academic achievement (e.g., Cameron et al., 
2019; McKinnon & Blair, 2019; Meixner et al., 2019; Miller-Cotto & Byrnes, 2020; Welsh et al., 2010). However, others 
(Fuhs et al., 2014; Willoughby et al., 2019), including the current replication have demonstrated that EF prospectively 
predicts academic skills, which is inconsistent with the theory of mutualism between cognitive and academic skills 
across early development (e.g., Peng & Kievit, 2020).

There are several potential reasons for the inconsistency of findings across this body of research and the present 
replication study in particular. First, it is not clear the degree to which EF constructs measured across studies are captur­
ing the same underlying skills (see Morrison & Grammer, 2016, for review). For example, although many studies adopt 
a tripartite model of EF, consisting of inhibitory control, working memory/updating, and cognitive flexibility/shifting 
(e.g., Diamond, 2013; Miyake et al., 2000), others include a broader range of EF-related constructs, such as impulsivity, 
inattention, and behavioral self-control (e.g., Fuhs et al., 2014) or do not include full coverage of subcomponents 
considered part of the broader EF umbrella (e.g., Miller-Cotto & Byrnes, 2020; Willoughby et al., 2019). Although we 
relied on a similar set of EF measures used in Schmitt et al. (2017) for the present replication study, there was not a 
complete overlap in the measures used across the three samples. For example, the Schmitt et al. (2017) study used the 
Simon Says task, whereas the STAR and Pathways studies included two child friendly versions of a Go/No-Go task to 
measure inhibitory control. Therefore, it is possible that the lack of uniformity of EF measurement approaches may 
partially explain the inconsistent findings in the present study, which is also considered a noted limitation in the area of 
early childhood EF research more broadly (see Morrison & Grammer, 2016).

Another potential reason we were unable to replicate the bidirectional cross-lagged associations between EF and 
academic achievement reported in the original paper could be due to the number of time-points across the three 
samples. Specifically, while children in Schmitt et al. (2017) were assessed within a narrow window during the fall 
and spring of their preschool and kindergarten years, children in the replication samples were tested once a year from 
preschool to first grade (STAR) and during kindergarten and first grade (Pathways). This difference in timing could have 
also contributed to our inability to replicate the bidirectional cross-lagged effects from preschool to kindergarten, as 
children in the Schmitt et al. (2017) study were sampled across the entire school year. The more fine-grained sampling 
procedure in Schmitt et al. (2017) allowed them to identify changes in the relations between EF and math achievement 
(i.e., mutual relations at preschool, EF → math at the end of kindergarten), which they attribute to changes in the 
complexity of math instruction during the kindergarten school year. Our sampling approach did not allow for a direct 
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test of this hypothesis, as neither the STAR nor Pathways study included fall and spring testing occasions across 
preschool and kindergarten. These inconsistent findings suggest that directional patterns of relations between EF and 
academic skills might, in part, depend on the number of measurement occasions studied across early development.

Finally, differences in sample size and sample characteristics could also explain our inability to replicate the Schmitt 
et al. (2017) findings. It is possible that subtle effects were not detected due to a lack of statistical power in our 
replication studies. Specifically, our sensitivity analyses suggested that effect sizes under .21 were not detectable in 
the STAR dataset due to our sample size, which may have affected our interpretations of the bidirectional relations 
between EF and math achievement. Future research using larger replication samples is needed to understand whether 
our inability to replicate the bidirectional cross-lagged associations reported in the Schmitt et al. (2017) study is due to 
sample size restrictions.

Further, differences in sample characteristics across the three samples might have also contributed to the inconsis­
tent replication findings. It could be that the Schmitt et al. (2017) sample included children with systematically different 
background characteristics. Given the importance of individual, demographic and family-level influences during early 
childhood, and their associations with EF and academic outcomes (e.g., Hackman et al., 2015; Sarsour et al., 2011). Thus, 
there may be possible untested moderators, or confounding variables, across samples that could explain the mechanisms 
involved in the co-development of EF and achievement.

Furthermore, the non-significant autoregression estimates of math achievement across the first two time-points was 
surprising given that the early math measures (WJ-AP) used in the current study have been extensively validated, 
age normed, and show excellent test-retest reliability across development (Woodcock, McGrew, & Mather, 2001). Both 
the Schmitt et al. (2017) study and the current replication included a working memory measure that involved verbal 
numerical tasks. The use of a working memory measure that includes numerical naming may introduce a confounding 
variable in these studies and may play a role in the associations between EF and math. However, the different and 
unequal sources of measurement error across latent and observed variables does not permit a fair comparison between 
the EF and math achievement variables in the current study, as latent factor variance is considered independent 
from residual measurement error, whereas observed variables include both true score and error variance (Bollen, 
2002; Rhemtulla et al., 2020). The large correlations observed within waves indicate that there is considerable shared 
variance among the latent EF factor and math achievement (STAR r = .87; Pathways r = .75). It is possible that when 
EF and math were modeled simultaneously, the EF latent variable accounted for the variance in math at the next 
time-point, thus contributing to the decrease in the autoregression of math achievement. Thus, the non-significant math 
achievement autoregression estimate could be due to the presence of the numerical working memory measures, or the 
EF latent variable in the ARCL model and raises questions about the utility of modeling EF as a latent when examining 
bidirectional associations using manifest math achievement variables.

In sum, the results of the present conceptual replication were mixed. We replicated the results of the EF measure­
ment model and longitudinal stability estimates of EF and literacy across two independent samples. However, we could 
not replicate the cross-lagged pattern of findings reported in the original study. The lack of bidirectional relations 
between EF and math achievement in both replication samples does not lend support to the theory of mutualism 
between these two constructs. However, the current conceptual replication has also revealed that bidirectional associa­
tions between EF and academic skills might not be robust to slight differences in EF measurement and number of 
measurement occasions, which might have contributed to the mixed findings in the literature, and has implications for 
our understanding of the development EF and academic skills across early childhood. Although this study cannot shed 
light on the best way to characterize associations between EF and academic achievement across early development, 
these findings underscore the need for more standardization in both measurement and modeling approaches – without 
which the inconsistency of findings may continue across this area of research.
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